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Abstract-This paper concerns the mechanical behavior of an epoxy adhesive layer that is located
between stiff adherends as the adhesive absorbs moisture from the ambient environment.

As the moisture penetrates the layer by an extremely slow ditJusion process the eposy undergoes a
simultaneous process of stress-relaxation. Calculations of viscoelastic interfacial stresses were performed
for a time-dependent response which is typical of epoxy for a layer geometry as encountered in practice.

The results show that for exposure to steady ambient humidity the viscoelastic stresses are smaller than
their elastic counterparts. However. under fluctuating ambient humidity the viscoelastic response may
cause stress reversals, and thereby failure modes, which are not predicted by elasticity theory.

I. INTRODUCTION

Adhesive bonding forms an attractive method of joining structural members. In analyzing the
stresses which develop within the bond it is necessary to account for the fact that the adhesive
materials respond in a viscoelastic manner under loads and their time-dependent behavior is
greatly affected by moisture and temperature.

When two adherends are joined together by a thin adhesive layer the adhesive absorbs
moisture from the ambient environment, at its exposed edges, which induces swelling strains
into the layer. Since the adherends are much stiffer than the adhesive they constrain the
adhesive-layer against its tendency to swell, thus causing the formation of extremely high
stresses within the layer. In this paper attention is focused on the interfacial-stresses which
arise at the interfaces between the adherends and the adhesive.

Since the moisture penetrates the layer by an extremely slow diffusion process, the epoxy
may undergo noticeable creep and relaxation while the diffusion process is in progress. The
main purpose of this paper is to relate the interaction, which occurs concurrently, between the
two time-dependent phenomena-moisture-diffusion and stress-relaxation.

The analysis employs a variational method and is inherently approximate in nature. It is
due to this approximation that the edge singularity in the stress field is replaced here by finite,
though large, values. However, for the exceedingly thin layers that are utilized in practice, the
selected expressions for the displacement fields should provide a good approximation. Fur
thermore, the approximation should not detract from the basic purpose of this work which is to
provide information about the relative influence of the diffusion and relaxation times.

2. FORMULATION

Consider a semi-infinite, isotropic and elastic adhesive layer, of thickness 2a, between two
semi-infinite adherend plates as shown in Fig. 1.

Let X, Y denote Cartesian coordinates and t time. Let e(X, t) represent the unconstrained
swelling induced by moisture and JL, v be the elastic-shear-modulus and Poisson's ratio,
respectively. Assume a state of plane-strain.

Introduce the following non-dimensional quantities

x = X/a, y = Yla, e(x, t) =e(X/a, t)
(1)

Also, denote

It =2v/(1- 2v), h =2(1- v)/(l- 2v), 13 =2(1 + v)/(1- 2v).
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Fig. I. The adhesive layer between rigid adherends exposed to moisture at X = o.

Consider now the following, approximate, form for the displacement fields within the
adhesive-layer

1
U(X, Y) = auO<x) +2a u:z(x)y2

1
V(X, Y) = a vl(x)y +3' a V3(X)y3.

(2)

In (2) U and V are components of displacement in the X and Y directions, respectively,
and uo, U2, VI> V3 are dimensionless, yet to be determined functions of the dimensionless
coordinate x. Note that for an induced swelling-strain of the form e(x,1) the displacements U
and V possess the required symmetries in Y.

Form (2) is the lowest-order approximation which provides information on the interfacial
stresses, at the boundary between adhesive and adherend, in a self-contained manner. For
exceedingly thin layers the approximation should provide sufficient accuracy.

Expressions (2) are essentially the same as used in Ref. [1].
Employing Hooke's law we obtain the following non-dimensional form for stress-strain

relations:

["]['
II

~]
1

h u '+-u 'y2° 2 2

Sy = II h /3 VI + V3y2
(3)

Sxy 0 0 0 -e
, 1 ,3

U2Y + VI Y+ 3' V3 Y

where primes designate.derivatives with respect to x.
In addition, due to the assumed rigidity and immobility of the adherends we have the

following boundary conditions:

u(x, 1, t) = 0
(4)

V(x, 1, t) = O.

In view of the constraints implied by boundary conditions (4) it is obvious that, when
employing a variational formulation, the unknown functions uo, U2, VI> and V3 in (2) cannot be
varied independently. As noted in [I] the four above mentioned functions can be treated
independently of each other by introducing suitable Lagrange multipliers Sn and St. It turns out
that Sn and St, which are the dimensionless force-conjugates of v(x, 1, 1) and u(x, 1,1) respec
tively, represent the sought after interfacial normal and shear stresses.

Employment of the principle of virtual work, and utilization of the Lagrange multipliers in
analogy with [I],t yields the following expression for the variation of the internal energy fJE

tSee particularly the section Variational Formulation of the Totally Constrained Case (vo =0).
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Similarly, the variation of the external work, 8l¥, is given by

Integration by parts of (5) and employment of (3) yield, upon factoring out the now
independent variations 8uo, 6U2, 8vI and 8V3:

2/ " /' 03" 2UO - 3e +S, =

I / " 2 (f 1)' 2 I / ' 1 015 2UO - 15 I + VI +3" Uo - 6 3e +2s, =

j(fl +1)uo' - [5 vt" - he - Sn = 0
~(fl + 1)uo' - i5 vt" -~hV,- f3e - Sn = O.

To these are adjoined the constraint conditions

(7)

(8)

Equations (7) and (8) express the field equations of the problem. The concomitant from the
integration-by-parts of (5) combines with (6) to determine the boundary conditions at x = O.
This combination, together with (3), yields

(9)

Note that the boundary conditions (9) were obtained after employment of (8), which hold
also at x = O.

In order to solve for Uo and VI we first eliminate s, between the first pair of (7) and Sn

between the last pair. Next, we employ (8) to eliminate U2 and V3. This procedure yields:

(10)

The solution of (10) is expressed with the aid of the following second order equation

(11)
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Denote the roots of (11) by ZI and Z2 and define

_ (/1 + l)al,2
XI,2 - (2/7)ZI.2 - 3/2

The solution of (10), which vanishes as x~ 00, is

In (12) AI and A2 are arbitrary constants that are determined with the aid of boundary
conditions (9).

3. ELASTIC SOLUTION FOR MOISTURE DIFFUSION UNDER CONSTANT AMBIENT HUMIDITY

It has been observed[2], [3]t that the saturation-moisture level in "neat" epoxy, as well as in
epoxy-based composites, depends on the relative humidity of the ambient environment. The
dilatational strains that accompany moisture sorption are about 2/3 of the swelling that would
be anticipated by straightforward "volume additivity".

The penetration of moistures into several epoxy resins was shown to follow the classical
diffusion equations [2-4].

For the one-dimensional diffusion process considered herein, it follows that under constant
ambient humidity the moisture-induced swelling is given by

. X )
e(X, t) = A erfc (2Vkt . (13)

In (13) A is a constant which converts moisture content to dilatational strain and k is the
coefficient of moisture diffusion.

Introduce the non-dimensional time fJ =kt/a 2
, then the non-dimensional version of (13)

reads

e(x, fJ) = A erfc(x/2V7i). (14)

Substitution of (14) into (12) leads to a closed-form solution for all the integrals therein [5, 6],

e.g.

f."" sinh a(x - s)e'(s) ds = -ie/l<l2 { sinh aX [1 - Herf(2~ +ayfj)

- erf(2~ - aV7i))] - ~ cosh ax[erf(2~ +aV7i) - erf(2~ - aV7i)]}

and a similar expression for

L"" cosh a(x - s)e'(s) ds.

With the simpler, closed-form version of "0 and VI that replaces all the integrals in (12) it is
possible to evaluate analytically the unknowns AI and A2 therein.

tFor most of this information. the author is greatly indebted to Messrs. 1. E. Halkias and E. L. McKague of General
Dynamics Corporation. Fort Worth Division.
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Employing the boundary conditions (9), with e(O, t) = A, the values of A t and A2 are determined
from the following two-by-two algebraic system:

where, in (15)

(15)

L t ,2 = 7 - (2aX)t,2

2
K t ,2 = - A efJ"1;l

MI ,2 = (2a +fll x)
2 t,2

J1,2 = -K t,2erf(at,2'\!{j).

Solving for AI and A2 from (15) we obtain the complete solution to Uo and VI in (12). This, in
turn, enables us to evaluate the interfacial tractions Sn and Sr by using the first and third of eqns
(7).

After straightforward, though tedious, manipulations we obtain

2
sn(x, (3) = '3 D [a2XtP2Kix, (3) - atX2P•Kt(X, {3))

-~ atPtA1e-alx -~ a2P2A2e-az:< - h e(x, {3)

(16)

Sr(x, (3) = -~ hD[alXth(x, {3) - aI2X2Jt(X, (3)]

-~ h(al2At e-alX +alA2 e-az:<) _ Ah e-(X2/4Ill.

3 6...;;p

In (16)

where

I/It,2 = eal;lx erfc(at,2'\!{j+x/2'\!{j)

1/11.2 = e-a';lx erfc (-at,2'\!{j+x/2'\!{j).

Also,

1
Pt ,2 = /1 +1- 5(aX)t,2'

Form (16) is the elastic solution to the present problem. While this form provides a
necessary step toward the generation of the viscoelastic solution, because its Laplace transform
is readily available, it cannot be evaluated numerically for a wide range of x and t because
Jt(x, (3), Kt(x, (3), AI and A2become numerically unstable.t Difficulties of this sort stem froni
the peculiar geometry of the adhesive layer, namely, the extremely small ratio of thickness to
length.

tFor x = 3 and t = 1000, with typical values for k, a and II, J, and K, ir.volve products of numbers of O(lOZZ) with
numbers of 0(10-2~, thus exceeding the accuracy provided even by "double precision".



706 y, WEITSMAN

The difficulty is overcome by the employment of an approximate form of erfc (z), as
follows [7]:

erfc Z == O(t(z» e- z2

where

5

O(t) ==~ al and t(z) == (1 +pZ)-lt.
j=.

(17)

(18)

Appropriate substitution of (17) into (16) yields an alternative, numerically stable, form for
the interfacial stresses. We obtain

1. ( fJ)==~b.a2P2Lle-alX-alP1L2e-alx _/ rf (/2,r;:;fJ)
A s" x, 3 f2 A 3 e c x v lj

+iV{ - a2X1P2Ge(X2/4~)(O(a2Vii +2~) + hex - 2a2fJ)0 (Ia2Vii - 2V:B1) )

- H(x - 2a2fJ) efJalLalX] +a.X2P1Ge-(X2/4~)(0(a1vfj+2~)

+h(x -2at/3)0(la1Vii - 2~/)) -H(x -2a1fJ)efJa ,Latx]

+!(atP•M2e-a,x - a2P2MIe-a2X)}

1 ( fJ) 5!J ( 2L -alx 2L -alx) I !J -(x2/4~)-s X ==-- a2.e -al 2e ----e
A /, 3A 6v'";ii

+~ f2V { alXI Ge-<Xl/4fJ
)(O(a2Vii +2Vp) -h(x - 2a2fJ)0(/a2Vii - 2VpI))

+H(x - 2a2fJ) efJalLalX] - al2X2H e-(x
2
/4,8) ( 0(a1Vii +2V:B)

- h(x - 2a1fJ)0(/a.Vii - 2~/)) +H(x - 2alfJ) efJaI2-aIX]

+~ (a.2M2 e -a,x - a22M. e-a1X)l
In (18)

and

{o ~<O
HW== 1 ~~O h(~)=={-ll ~<O

~>O

As t -+ 00 the "fully saturated" elastic solution, obtained by taking limits of (18) as fJ -+ 00,

reads

~ s,,(x, 00) == - /J[1+j f:A (a 1P1L2e-a1x_ a2P2L Ie-azX)]

1 SfA s/(x, 00) == - '3"1 (a.2L2e-a,x - alL I e-"2X
).

(19)

tThe numerical value of oJ U= 1,2, ... 5) and p are given in Section 7.1.26. on page 299 of Ref. [7). This approximation is
valid for all z.



Interfacial stresses in viscoelastic adhesive-layers due to moisture sorption 707

4. VISCOELASTIC SOLUTION FOR MOISTURE DIFFUSION
UNDER CONSTANT AMBIENT HUMIDITY

Uniaxial-tension experiments [8] on epoxy indicate that its creep-response can be described
by a "power law" form as follows:

D(t; T) = Do(T) +D. [a/T)T (20)

In (20) T denotes temperature and a(T) is the "shift-factor" function. Additional data on
polyester[9] and epoxy[lO] indicate that the creep-response depends also on the moisture
content m, namely D = D(t; T, m). However, this dependence is omitted in the present
analysis. Furthermore, we shall consider the case of uniform temperature for the entire
adhesive.

In most adhesives the Poisson's ratio v remains constant under a wide range of conditions.
Consequently we shall consider a viscoelastic shear-compliance of the form

where

do = 2(1 + v) Do.t (21)

Denote T = a2/k and Tr = d t l
/
q

• Let p be the variable of the Laplace transform in the time
domain and." = pT. Finally, let the ratio between the characteristic diffusion time T and the
characteristic creep time Tr be 9 = Tr/T.

Then, the Laplace-transform of (21) is

1 - r(q +1)
d/D(P) = 1+ (fhI)q . (22)

The reciprocity relations between the transforms of the creep and relaxation functions[ll]
yield

(23)

Upon insertion of the explicit expressions for AI and A2 into (16), the Laplace transforms of
the elastic stresses (denoted by s) become

(24)

Note that the singularities at Y;;; = Q I and Y;;; = Q2 are removable.

tThe non-dimensional viscoelastic 'stresses are given by $ij = ITil do.
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From the fundamental equations of linear viscoelasticity[l2] it follows that the Laplace
transforms of the viscoelastic solution to our problem (denoted by overbars) are

~ PSn(x, p) = R(8T/) .*PSn(x, p)

~ ps,(x, p) = R(8"1) .*ps,(x, p).

(25)

In order to obtain the viscoelastic solution in the real-time domain it is necessary to invert
(25). The inversion was obtained by the method of collocation[13]. Typically, expressions (25)
were plotted vs log "I and a set on N points T/i(; =1, ... N) was selected to cover the ranges
where those plots show noticeable curvatures. It was found that the shapes of the above
mentioned plots, as well as the locations of high curvature regions, depended on x. Therefore, it
was impossible to employ any specific set of points "Ii in the inversion and an appropriate
selection had to be made for each value of x.

The calculations followed the scheme of Ref. [13]. Note, however, that for a "power-law"
creep as given in (20) we have lim D(/, T)-+oo, hence the equilibrium stress vanishes. Further-,--
more, in the present case the transform-variable is "I = pT, whereby the inversion is obtained in
terms of dimensionless time IIT, rather than real time I.

Calculations were performed for an adhesive-layer with the following selected properties:
Thickness a =0.()()3", moisture diffusivity k =0.2 X 10-8 in2/sec, Poisson's ratio /I =0.45,

100% R H.-to-swelling conversion-factor A =0.03, creep' compliances Do =2 X 10-6 in2{1b,
DI =0.2 X 10-6 in2/1b with q =0.19. The corresponding value of the shift-factor function was
a(T) = l.

With the above numerical values we obtain T = 4500 sec-I and the value of 8 in (22) is
8= 2450.

Numerical evaluations were performed on an Amdahl 470 digital computer. The results are
shown in Figs. 2-9. The heavy solid lines in Figs. 2-7 show the dependence of the non
dimensional viscoelastic normal and tangential interlaminar stresses Sn and s, on time I at three
fixed stations within the layer, x = Xla = 0.01, 1 and 3, when the free edge (x = 0) is exposed to
a constant RH. = 100% at 1=0. Note that the time scale is logarithmic.

For comparison purposes, the elastic stresses-as given in (18)-are shown in thin solid
lines in Figs. 2-7. Note that any station within the layer senses the build-up and approach of the
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Fig. 2. Elastic and viscoelastic values of the non-dimensional normal interlaminar traction s. at x =XIa =
0.01 vs. log t (t in seconds). Heavy lines-viscoelastic, thin lines-elastic. Solid lines-exposure to a

constant ambient R.H., dashed Iines-exposure to lIuctuating ambient R.H. (according to eqn 29).
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vs log t (t in seconds). Heavy lines-viscoelastic, thin Iines-elastic. Solid Iines-exposure to a constant

ambient RH., dashed Iines-exposure to fluctuating ambient RH. (according to eqn 29).

moisture in a gradual manner and that a steep increase in stress occurs after the passage of a
time-span, which depends on the characteristic diffusion time and the location of the station.
Beyond that time the station notices a "fully saturated" state, which explains the leveling-off of
the elastic stresses for longer times.

The viscoelastic values, which are affected by relaxation, diminish to zero with time.
Thus far all viscoelastic results were obtained from inversion of (25) by means of collo

cation.
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Consider now an approximate expression for the relaxation modulus [14]

E(t) = _1_ sin 7Tn
D(t) 7Tn

where

dn = net) = --D(t).
dlogt

Employing (26), the "quasi-elastic" (viscoelastic) solution is given by[13]

s:·e·(x, t) = F(t)sft(x, t)

s~·e·(x, t) = F(t)s,(x, t)

(26)

(27)
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Fig. 8. Elastic and viscoelastic values of the non-dimensional normal interlaminar traction s. at times
t =1000 sec and t = 10,000 sec V5 x. Dashed lines-elastic, solid lines-viscoelastic.

where, in (27), s,;(x, I) and St(x, I) and the elastic expressions given in (18) and

FO =_1_ sin 1Tn(l)
I 1+bl" 1Tn(t)

n(t) = qbl"/O +btll)

with b =0.046 and q =0.19.
It is interesting to note that for the particular geometric and physical values for the

adhesive-layer employed in the present problem the quasi-elastic approach yielded results which
were almost indistinguishable from the collocated inversion. This fortuitous circumstance could
not be anticipated a priori because the transformed expressions, (24) and (25), do exhibit large
curvatures in the 11 domain. Ingeneral, the usefulness of a quasi-elastic method must be verified in
such circumstances. In the present case expressions (27) are certainly easier to evaluate than (25).
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Fig. 9. Elastic and viscoelastic values of the non-dimensional tangenti~ interlaminar traction $, at times
t =1000 sec and t =10,000 sec vs x. Dashed Iines-elastic, solid lines-viscoelastic.

Employing (27), values of s~"'(x, t) and sr"(x, t) were calculated for fixed values of time,
t == 1000 sec and 10,000 sec, along the interface between the adhesive and adherend. These
results are shown in Figs. 8 and 9 for 0 s x s 1.6. (For comparison purposes, the elastic values
are also shown in dashed lines.)

5. VISCOELASTIC SOLUTION UNDER FLUCTUATING AMBIENT HUMIDITY

Thus far the adhesive-layer was considered to be subjected to a sudden exposure to ambient
humidity at time t == 0, with a swelling conversion factor A.

For fluctuating ambient humidity A == A(t) the interlaminar stresses are given by a super
position integral as follows

i t d A(t')
s····(x t) == s····(x t - t')--dt'
m, 0 m, dt' (28)

where m == n or t.
In (28) the kernel functions, under the integral sign, are given by (27).
A sample computation was performed for a sudden exposure to 100% R.H. followed by

drying at time t == t. later. In this case

whereby

A(t) == A[H(t) - H(t - tl)] (29)

(m == nor t). (30)

Results for t. = 10,000 sec. at x == 0.01, x == 1.0 and x = 3.0 are shown by the dashed lines in
Figs. 2-7. Note that the superposition of wetting and subsequent drying is algebraically additive
in the elastic case. Therefore, all the elastic stresses, represented by thin dashed lines in Figs.
2-7, tend to zero as t -+00 without any further sign changed However, in the viscoelastic case,

tThere is nevertheless an exception in Fig. 3.
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the drying effects are superimposed on a relaxed wet state and this causes an overcompen
sation-thereby introducing sign-reversals in the stresses. Eventually, as t-+ oo, the viscoelastic
stresses too tend to zero.

It is observed that viscoelasticity predicts detrimental effects that are caused by fluctuations
in relative humidity-such as low cycle fatigue and interfacial tension-that are absent in an
elastic analysis.

6. CONCLUDING REMARKS

The present analysis is based on several idealizations which restrict the validity of the
results. The exceedingly large stresses which are predicted by linear theories near the corners
X = 0, Y = ± a cannot be borne by real adhesives and the response in those regions must be
represented by a suitable non-linear model.

In addition, the actual viscoelastic response of resins depends on the moisture content,
which introduces yet another non-linearity into the analysis of adhesive layers.

The evaluation of those non-linear effects still awaits an appropriate characterization at the
present time. Once available it would require solution by means of numerical methods.
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